
Robotics In Flight (RIF) Copyrighted Material – Distribution permitted under the terms given on the cover page

PYTHON PILOT™ FLIGHT CONTROL SOFTWARE

INTERFACE DESCRIPTION DOCUMENT

Version -

2020 July

 Copyright (C) 2020 by Robotics In Flight, LLC.

 Python-PilotTM Flight Control Software is free software: you can

 Redistribute it and/or modify it under the terms of the GNU General Public

 License as published by the Free Software Foundation, either version 3 of

 the License, or(at your option) any later version.

 Python-PilotTM Flight Control Software is distributed in the hope that it

 will be useful, but WITHOUT ANY WARRANTY; without even the implied

 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

 For a copy of the GNU General Public License see

 <http://www.gnu.org/licenses/>.

 PiQuad™ and PythonPilot™ are trademarks owned by Robotics In Flight, LLC.

PythonPilot™ Flight Control Software Interface Description Document

Robotics In Flight (RIF) Copyrighted Material – Distribution permitted under the terms given on the cover page

VERSION HISTORY
This is the initial draft Interface Control Document prepared to describe the open
interfaces and operation of the PiQuad Flight Control Software, Rev. -.

Version # Implemented

By

Revision

Date

Approved

By

Approval

Date

Reason

- D. Haessig 28 Jul 2020 na Initial release

PythonPilot™ Flight Control Software Interface Description Document

Robotics In Flight (RIF) Copyrighted Material – Distribution permitted under the terms given on the cover page

TABLE OF CONTENTS

1. INTRODUCTION... 4

1.1 Safety Warning .. 4

2. REFERENCE DOCUMENTS AND INFORMATION ... 4

2.1 Python and Linux ... 4

3. INTERFACE CONTROL INFORMATION .. 4

3.1 Top level flow diagram .. 4

3.2 IMU (mpu6050) read ... 4

3.3 Keyboard inputs .. 6

3.4 Read RC Sticks and sensor data ... 6

3.5 Static variables .. 7

3.3.1 Navigation function statics -- statics_nav[] ... 10

3.3.2 Control function statics -- statics_cntr[] .. 11

3.3.3 Setpoint function statics -- statics_sp[] ... 11

3.3.4 Guidance function statics -- statics_guid[] .. 12

3.3.5 Guidance function statics -- statics_rc[] .. 12

APPENDIX A: ACRONYMS ... 13

APPENDIX B: DISCLAIMER ... 13

APPENDIX C: LICENSES .. 14

PythonPilot™ Flight Control Software Interface Description Document

Robotics In Flight (RIF) Copyrighted Material – Distribution permitted under the terms given on the cover page

1. INTRODUCTION

This Interface Control Document (ICD) captures the necessary information required to
effectively define the PythonPilot and PiQuad’s software interfaces. The intended audience is
all users of the PythonPilot™ flight control software and the PiQuad™ system.

1.1 SAFETY WARNING

Users of the PiQuad should use good judgement and extra caution when flying or ground testing
the PiQuad. Because this product is flexible and modifiable, be aware of the potential for
introducing or exciting a flaw (a bug) in the flight software or hardware that could affect or
degrade performance, potentially creating a dangerous condition. Use motion limiting
restraints – tethers – whenever testing new features or code modifications, and only fly
untethered after a long enough period of constrained and issue-free flight testing. Obey all FAA
rules (https://www.faa.gov/uas/getting_started/fly_for_work_business/). See Appendix B for
additional warnings.

2. REFERENCE DOCUMENTS AND INFORMATION

2.1 PYTHON AND LINUX

The flight control software described in this document is written in Python and runs within the
Linux operating system. For information and documentation pertaining to Python and Linux
we refer the reader to:

• https://www.python.org/

• https://www.linuxfoundation.org/

3. INTERFACE CONTROL INFORMATION

3.1 TOP LEVEL FLOW DIAGRAM

The flight control top level diagram given in Figure 3-1 shows the order of execution of the
functions present in the code. Hardware interfaces are those that connect to the solid blue
blocks. The key outputs from each block are listed to the right of each software function
block. Key inputs to software blocks are shown entering from the left. Not all IO data are
listed on this figure. A complete listing of the input and output data are provided in the
individual sections given below, one for each function.

3.2 IMU (MPU6050) READ

Calling function: C = mpu6050.ReadData()

The array C contains the IMU sensed body accelerations and angular rates:
C = [Ax, Ay, Az, Gx, Gy, Gz]

• Ax, Ay, Az - IMU accelerations (G's)

• Gx, Gy, Gz - IMU angular velocities (deg/sec)

file:///C:/Users/dahae/Documents/RoboticsInFlight/100_QuadCptr/90_Design/31_ADD_ICD/(https:/www.faa.gov/uas/getting_started/fly_for_work_business/)
https://www.python.org/
https://www.linuxfoundation.org/

PythonPilot™ Flight Control Software Interface Description Document

Robotics In Flight (RIF) Copyrighted Material – Distribution permitted under the terms given on the cover page

Figure 3-1 – Flight Control Software Flow Diagram

 Enter

IMU IMU Read -- Raw IMU output

Keyboard
Read

{char}

I
2
C

**

 Stk – { stk_r, stk_p, stk_y, stk_v }

PiQuad SW Flow Diagram

 { rx_alt, mag }

Radio Controller
& CRIUS sensor

inputs

Setpoint Computation Stk Setpoint values: SP – {sp_r, sp_p, sp_y, sp_v }

Flight State Machine {char} flt_state

Read RC sticks
& sensor data

Navigation

{cal_data}

{ baro_alt, mag }

 -- Euler angles, Velocity, Position

 -- body angular rate

Guidance
 -- Attitude Setpoints {r_sp, p_sp, y_sp}

Altitude Setpoint -- alt_sp

Control

 -- controls { u_pitch, u_yaw, u_roll, u_vert }

 , alt_sp

Motor Drives -- ESC commands

Telemetry Data

Return

Electronic Speed
Controls

Laptop
WiFi

SP

2.4GHz

 GPS { lat, lon, gps_alt }

 { delta_ESC_r, delta_ESC_p,
 delta_ESC_y, delta_ESC_v }

PythonPilot™ Flight Control Software Interface Description Document

Robotics In Flight (RIF) Copyrighted Material – Distribution permitted under the terms given on the cover page

3.3 KEYBOARD INPUTS

Calling function: char = keyPressed()

The variable ‘char’ is a scalar character, an ascii. Keyboard inputs are passed from the Putty
console through the WiFi link to Python running on the PiQuad. Input command definitions are
as follows:

Character (char) Associated command
‘c’ Switch to Calibration Mode

0 Switch to Idle Mode

1 Switch to Flight Mode

2, 3, 4 Set control variable index command:

 cv = int(char) – 2

cv = 0: Thrust and yaw rates set directly from commanded stick derived setpoints

cv = 1: Guidance function produces altitude and heading setpoints

cv = 2: unused

5 Stop writing telemetry to console

6 Write telemetry group 1 to console

7 Write telemetry group 2 to console

8 Write telemetry group 3 to console

‘s’ ‘Stop updating telemetry data and write content of telemetry data memory to file
upon shutdown

3.4 READ RC STICKS AND SENSOR DATA

Calling function:

[stk_r, stk_p, stk_v, stk_y, rx_alt, magx, magy, magz, lat, lon, gps_alt, ch5, ch6, ch7, ch8] = \
 rccmd(rc_port, serial_port_index, alt_zero_data, prnt_flag)

Table 3.4-1: rccmd() inputs

Variable Name Description Units
rc_port Serial port index variable -

serial_port_index Serial port input flag for future modifications to produce alternative
return data. Currently fixed to ‘T’

-

alt_zero_data Initial altitude measured with baro-altimeter at starting location meters

prnt_flag Flag to cause printing of RC raw input data -

Table 3.4-2: rccmd() outputs

Variable Name Description Units
stk_r, stk_p, stk_v, stk_y Raw RC input stick positions read directly from RC counts

rx_alt Received baro-altitude relative to starting altitude (alt_zero_data) meters

magx, magy, magz Raw magnetometer readings counts

lat, lon GPS latitude and longitude degrees

gps_alt GPS altitude m

ch5, ch6, ch7, ch8 Raw RC input stick positions channels 5 – 8 counts

PythonPilot™ Flight Control Software Interface Description Document

Robotics In Flight (RIF) Copyrighted Material – Distribution permitted under the terms given on the cover page

3.5 FLIGHT STATE MACHINE

Table 3.5-1: statemachine() inputs

Variable Name Description Units
flt_state Current flight state index

 -1 – Preflight Auto-calibration
 0 – Idle
 1 – Flight
 2 – Emergency Off
 3 – User Commanded Calibration Mode

-

on_time Time elapsed since the program’s execution start time sec

char Input character

sp_r, sp_p,
sp_y, sp_v,

Setpoints: roll, pitch, yaw, and vertical -

umag Control magnitude counts

statics_rc RC input statics

mpu6050 MPU6050 class instantiation identifier

serial_port_index Serial port index

cal_data IMU calibration data

RC_cal_data RC calibration data

heading_bias Heading calibration data (raw heading angle reading when oriented with
x axis pointing true north)

rad

telem_flag Telemetry storage ON/OFF flag (1/0)

telm_idx Telemetry storage group index

cv Control variable

em_off Emergency Off index (1 – Prop commands set to 0, Emergency Off
Mode)

idle_off Idle Off index (1 – Prop commands set to 0, Idle Mode)

Table 3.5-2: statemachine() outputs

Symbol Description Units
flt_state Same as above

statics_rc Same as above

telem_flag Same as above

telm_idx Same as above -

cv Same as above -

RC_cal_data Same as above -

em_off Same as above -

idle_off Same as above -

Table3.5-3: IMU Rough Calibration data

Symbol Description Units
[bax, bay, baz] Accelerometer output biases G

[SFax, SFay, SFaz] Accelerometer output scale factors -

[bwx, bwy, bwz] Gyro bias deg/sec

[SFwx, SFwy, SFwz] Gyro output scale factors -

[alphax, alphay, alphaz] IMU Coordinate frame misalignment angles relative to fixed body frame rad

cal_data = [bax, bay, baz, SFax, SFay, SFaz, bwx, bwy, bwz, SFwx, SFwy, SFwz, alphax, alphay, alphaz]

PythonPilot™ Flight Control Software Interface Description Document

Robotics In Flight (RIF) Copyrighted Material – Distribution permitted under the terms given on the cover page

Table3.5-3: Radio Controller Calibration data

Symbol Description Units
rc_zero_data[0..3] RC nominally zero location (roll, pitch, yaw, vertical) counts

rc_range_data[0..3] RC range -- maximum output minus minimum output
 (roll, pitch, yaw, vertical)

counts

RC_cal_data = [rc_zero_data, rc_range_data]

3.6 SETPOINT

Table 3.6-1: setpoint() inputs

Variable Name Description Units
cv Control variable

stk_r, stk_p, stk_v, stk_y Raw RC input stick positions read directly from RC (uncompensated) counts

statics_sp Setpoint static variables

RC_cal_data -

Table 3.6-2: setpoint() outputs

Symbol Description Units
sp_r, sp_p, sp_y, sp_v Setpoint outputs (setpoint range: -1 to1) na

statics_sp Same as above

3.7 GUIDANCE

Table 3.7-1: guidance() inputs

Variable Name Description Units
cv Control variable

sp_r, sp_p, sp_y, sp_v Setpoint outputs (setpoint range: -1 to 1) na

statics_guid Guidance static variables

statics_nav[2] Body frame yaw angle (theta_yaw) na

flt_state Flight state na

Table 3.7-2: guidance() outputs

Symbol Description Units
[thet_roll_sp,
thet_pitch_sp,
thet_yaw_sp]

Roll, pitch, and yaw angle setpoints rad

omeg_yaw_sp Yaw angular rate setpoint rad/sec

vthrust_sp Vertical thrust setpoint (for raw cv=0 control mode) Counts

alt_sp Altitude setpoint m

statics_guid Same as above

PythonPilot™ Flight Control Software Interface Description Document

Robotics In Flight (RIF) Copyrighted Material – Distribution permitted under the terms given on the cover page

3.8 NAVIGATION

Table 3.8-1: nav() inputs

Variable Name Description Units
[Ax, Ay, Az] Accelerometer data from IMU transformed onto NED coordinate frame G

[Gx, Gy, Gz] Gyro rate data from IMU transformed onto NED coordinate frame deg/sec

mpu6050 MPU6050 class instantiation identifier

delta_time Elasped time between this and prior call to nav() seconds

statics_nav Navigation statics

cal_data IMU cal data (defined above)

rx_alt Received baro-altitude relative to starting altitude (alt_zero_data) meters

magx, magy, magz Raw magnetometer readings in PiQuad Body frame counts

heading_bias Heading calibration data (raw heading angle reading when oriented with
x axis pointing true north)

rad

statics_sensor Sensor statics

cv Control variable cv

Table 3.8-2: nav() outputs

Symbol Description Units
[omega_r, omega_p,
omega_y]

Filtered body rates (roll, pitch, yaw) rad/sec

[vx_kp1, vy_kp1, vz_kp1] Filtered vehicle velocity along NED coordinates m/sec

statics_nav Navigation statics

statics_sensor Sensor statics

3.9 CONTROL

Table 3.9-1: control() inputs

Variable Name Description Units
cv Control variable

[thet_pitch_sp,
thet_roll_sp,
omeg_yaw_sp,
thet_yaw_sp, alt_sp]

Control setpoints (same definitions as above) rad,
rad/sec,

m

[xr_kp1, xp_kp1, xy_kp1] Filtered roll, pitch and yaw angles rad

[omega_r, omega_p,
omega_y]

Filtered roll, pitch and yaw angular rates rad/sec

[vx_kp1, vy_kp1, vz_kp1] Filtered vehicle velocity along NED coordinates m/sec

pz_k Filtered altitude (z location along NED coordinates) m

statics_cntr Control statics

Table 3.9-2: control() outputs

Symbol Description Units
[u_pitch, u_yaw, u_roll] Control torque signal about pitch, yaw, and roll axes N-m

u_vert Control force signal along body z-axis (nominally vertical direction) N

PythonPilot™ Flight Control Software Interface Description Document

Robotics In Flight (RIF) Copyrighted Material – Distribution permitted under the terms given on the cover page

3.10 STATIC VARIABLES

Static variables are created using arrays at the top level code and passing these into functions
and returning them back to the top level code for the purpose of retaining their values.

3.3.1 Navigation function statics -- statics_nav[]
Static variables used in navigation function realization.

statics_nav = [r , p , y , xV , yV , zV , xA , yA , zA , xP , yP , zP , axb , ayb , azb , xb , yb , zb , axS , ayS , ayS]

Name Sym Description Units
Roll Euler angle

r
Body frame roll angle rad

Pitch Euler angle
p Body frame pitch angle rad

Yaw Euler angle
y Body frame yaw angle rad

Velocity x
xV

x-axis velocity in NED local level frame m/s

Velocity y
yV y-axis velocity in NED local level frame m/s

Velocity z
zV z-axis velocity in NED local level frame m/s

Acceleration x
xA x-axis acceleration in NED local level frame m/s2

Acceleration y
yA y-axis acceleration in NED local level frame m/s2

Acceleration z
zA z-axis acceleration in NED local level frame m/s2

Position x
xP x-axis location in NED local level frame m

Position y
yP y-axis location in NED local level frame m

Position z
zP z-axis location in NED local level frame m

Bias acceleration x
axb x-axis acceleration in NED local level frame m/s2

Bias acceleration y
ayb y-axis acceleration in NED local level frame m/s2

Bias acceleration z
azb z-axis acceleration in NED local level frame m/s2

Bias angular rate x
xb x-axis acceleration in NED local level frame rad/s

Bias angular rate y
yb y-axis acceleration in NED local level frame rad/s

Bias angular rate z
zb z-axis acceleration in NED local level frame rad/s

Scalefactor accel x
axS x-axis acceleration scalefactor -

Scalefactor accel y
ayS y-axis acceleration in scalefactor -

Scalefactor accel z
ayS z-axis acceleration in scalefactor -

NED – North East Down coordinate frame

PythonPilot™ Flight Control Software Interface Description Document

Robotics In Flight (RIF) Copyrighted Material – Distribution permitted under the terms given on the cover page

3.3.2 Control function statics -- statics_cntr[]
Static variables used in pitch and control law implementation.
statics_cntr = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Name Sym Description Units
State 1 pitch

1px Pitch controller state vector element 1 – angle rad

State 2 pitch
2 px Pitch controller state vector element 2 – angular rate rad/sec

State 3 pitch
3 px Pitch controller state vector element 3 – torque N-m

State 4 pitch spare

State 5 pitch spare

State 1 roll
1px Roll controller state vector element 1 – angle rad

State 2 roll
2 px Roll controller state vector element 2 – angular rate rad/sec

State 3 roll
3 px Roll controller state vector element 3 – torque N-m

State 4 roll spare

State 5 roll spare

3.3.3 Setpoint function statics -- statics_sp[]
Static variables used in setpoint generation.
statics_sp = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Name Sym Description Units
Roll cmd state 0

0Rx Roll setpoint filter state 0 -

Roll cmd state 1
1Rx Roll setpoint filter state 1 -

Roll cmd state 2
2Rx Roll setpoint filter state 2 -

Roll cmd state 3
3Rx Roll setpoint filter state 3 -

Pitch cmd state 0
0Px Pitch setpoint filter state 0 -

Pitch cmd state 1
1Px Pitch setpoint filter state 1 -

Pitch cmd state 2
2Px Pitch setpoint filter state 2 -

Pitch cmd state 3
3Px Pitch setpoint filter state 3 -

Yaw cmd state 0
0Yx Yaw setpoint filter state 0 -

Yaw cmd state 1
1Yx Yaw setpoint filter state 1 -

Yaw cmd state 2
2Yx Yaw setpoint filter state 2 -

Yaw cmd state 3
3Yx Yaw setpoint filter state 3 -

PythonPilot™ Flight Control Software Interface Description Document

Robotics In Flight (RIF) Copyrighted Material – Distribution permitted under the terms given on the cover page

3.3.4 Guidance function statics -- statics_guid[]
Static variables used in sensor signal generation.
statics_guid = [0, 0]

Name Sym Description Units
Yaw setpoint

ySP Setpoint angle yaw (sp_y) rad

Altitude setpoint AltSP Altitude setpoint (alt_sp) m

3.3.5 Guidance function statics -- statics_rc[]
Static variables used in processing of RC command setpoint inputs in ‘statemachine’.
statics_rc = [0, 0, 0]

Name Sym Description Units
statics_rc[0] - - counts

statics_rc[1] - - counts

statics_rc[2] - - counts

PythonPilot™ Flight Control Software Interface Description Document

Robotics In Flight (RIF) Copyrighted Material – Distribution permitted under the terms given on the cover page

APPENDIX A: Acronyms
The following table provides definitions for terms relevant to this document.

Acronym Definition

IO Input-Output

IMU Inertial Measurement Unit

RPAS Remotely Piloted Air System

UAS Unmanned Air System

UAV Unmanned Air Vehicle

FAA Federal Aviation Administration

RIF Robotics In Flight™

APPENDIX B: Disclaimer
If you’re in doubt of your skills as a UAV, Drone, multi-copter or RPAS pilot, or are unsure of your equipment or
piloting skills, do not fly.

Multicopters are inherently dangerous and should not be used by anyone without professional training and
experience. It is the responsibility of the user to decide if the equipment is suitable for your intended use.

You (purchaser/user) are responsible for following all federal, state and local laws which may regulate the use of
Remotely Piloted Air Systems operated in your area.

Purchaser/user assumes all liability for damages to property and persons from the equipment.

Purchaser/user confirms that they will operate UAV’s, Drones or RPAS in accordance with FAA rules

Purchaser/user assumes all liability for improper use of the equipment.

Purchaser/user is responsible for proper configuration and maintenance of the equipment.

Users of this document and/or of the PiQuad should have proper liability insurance covering their operation of the
platform. RC aircraft are not covered under standard liability insurance. Please check with your insurer regarding
the correct insurance coverage.

Robotics In Flight LLC shall not responsible for any warranty claim due to misuse, crashes, damage, incorrect
setup/configuration, or other negligent behavior.

In no event shall Robotics In Flight, LLC be liable for special, indirect, incidental or consequential damages.
Indemnity: users of the PiQuad multicopter or this document shall indemnify and hold harmless Robotics In Flight,
LLC, its officers, directors, agents, representatives and employees from any and all claims, liabilities, damages, and
expenses (including attorneys’ fees actually incurred) on account of death or injury to any person or damage to any
property arising from or in connection with any goods supplied. This indemnity shall apply without regard to
whether the claim, damage, liability or expense is based on breach of contract, breach of warranty, negligence,
strict liability, or other.

PythonPilot™ Flight Control Software Interface Description Document

Robotics In Flight (RIF) Copyrighted Material – Distribution permitted under the terms given on the cover page

APPENDIX C: Licenses

Name Description Ver Copyright holder License
piquad_main.py Top level module (initialization, static variables,

main loop)
1 RIF, 2017 GPL v3

flt_st.py Flight state machine 1 RIF, 2017 GPL v3

kb_cmd.py Console interface 1 RIF, 2017 GPL v3

esc.py Electronic speed control driver control 1 RIF, 2017 GPL v3

imu.py Inertial measurement unit sensor na Jeff Rowberg, 2012 MIT

rif_gnc.py Guidance, navigation, and control functions 1 RIF, 2017 GPL v3

rif_cmd.py Sensor interface library module (RC, GPS, baro-alt,
magnetometer)

1 RIF, 2017 RIF
Proprietary

ATMega2560_4chRC_GP
S_Alt_Mag_BaroFix3.ino

CRIUS All-in-One Pro sensor interface executable
module

1 RIF, 2017 RIF
Proprietary

RIF – Robotics In Flight LLC.™

https://www.gnu.org/licenses/quick-guide-gplv3.html
https://www.gnu.org/licenses/quick-guide-gplv3.html
https://www.gnu.org/licenses/quick-guide-gplv3.html
https://www.gnu.org/licenses/quick-guide-gplv3.html
https://opensource.org/licenses/MIT
https://www.gnu.org/licenses/quick-guide-gplv3.html

